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Common-Source Phase Error of a Dual-Mixer
Stability Analyzer

C. A. Greenhall1

The conceptual design of a dual-mixer stability analyzer for the Deep Space
Network is described. A bound for the mean-square common-source phase error is
given as a function of the power spectrum of the offset source and the response of
the lowpass mixing filter. A derivation of the result is given in two appendices.

I. Introduction

As part of the Frequency and Time Subsystem Monitor and Control Upgrade Task, development of a
frequency standards analyzer (FSA) is under way. One analyzer is to be installed at the Signal Processing
Center of each Deep Space Communications Complex to monitor the stability of up to eight frequency
sources. The current short-term sensitivity goal is an Allan deviation of 3× 10−15/τ (1 ≤ τ ≤ 100 s) for
a comparison of any two sources at 100 MHz. One needs a noise floor at least this low to measure the
stability of the compensated sapphire oscillators (CSOs) [1], which are being installed in support of the
Cassini mission. The purpose of this article is to calculate two components of the noise floor in terms of
quantities that are known or measurable.

Single-mixer stability analyzers have been used at JPL and the Deep Space Network for a long time
(see [2], for example). In a single-mixer analyzer, each pair of sources to be compared requires an offset
generator, a mixer, and a zero crosser to provide a low-frequency square-wave beat note, typically at 1 Hz,
whose zero crossings are time tagged and processed into phase residuals for the pair. In one time-tagging
method, the readings of a free-running counter are latched. In another method, the “picket fence,” an
interval timer and an auxiliary reference signal are used to emulate an event timer [3]. In all these systems,
the beat period is the same as the sample period of the phase residuals.

For the FSA, a dual-mixer design (Fig. 1) has been proposed2 to take advantage of a new commercial
multichannel event timer. A dual-mixer analyzer has a single reference source, or transfer oscillator,
with its own offset generator. The resulting offset source is mixed against each of the sources under
test to provide beat notes whose zero crossings yield phase residuals of each test source against the
offset source. Any two of these phase-residual time series can be subtracted in software to give phase
residuals of the two test sources against each other, with the phase deviations of the offset source canceling

1 Tracking Systems and Applications Section.
2 C. A. Greenhall, “Conceptual Design of a Dual-Mixer Measurement System Based on a Timestamp Counter,” JPL internal
document, Jet Propulsion Laboratory, Pasadena, California, April 1, 1999.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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Fig. 1.  The dual-mixer stability analyzer.  Each source under test (1,2,...) is mixed with the offset reference source 0.
Averaged phase residuals from channels i-0 and j-0 are subtracted to give phase residuals for dual-mixer chanel i-j.
(OSG = offset generator; LPF = lowpass filter; ZC = zero crosser.)

to some degree. Although there can be many test sources, each with its own mixer, the term “dual mixer”
is used because each pair comparison requires two mixers. Nevertheless, the hardware configuration of
a dual-mixer instrument is simpler than that of a single-mixer instrument that has to monitor the same
set of sources against each other.

If the test sources are independent, then the beat notes of a dual-mixer analyzer are not coherent;
thus, the phase residuals of two test sources, i and j, against the offset source 0 are time tagged at
different sets of points on the time axis (the zero crossings themselves). In previous dual-mixer designs
[4], the phase residuals for the pairs i-0 and j-0 are interpolated to a fixed set of time points before
being subtracted. As a consequence, the synthesized i-j phase residuals are contaminated by short-term
offset-source noise, here called common-source phase error. In the FSA design, the beat period, τb, is
much shorter (0.01 s) than the desired sample period, τs (0.5 s, to achieve a measurement bandwidth of
1 Hz). An average i-0 phase residual for each successive interval of length τs is computed by a method
called integrated interpolation (Fig. 2). Because the phase residuals for all i-0 channels are averaged over
the same set of τs intervals, fluctuations in offset-source phase on time scales of order τs and greater are
effectively canceled when the average phase residuals of two of these channels are subtracted. In fact,

ts

tm a tm +1 tm +2 tn tm -1 tm a tm +1

t

f (tn )

fpl (t )

Fig. 2.  Integrated interpolation of phase residuals.  A beat-note zero crossing at tn gives a phase residual
f (tn ).  The average phase residual over the fixed interval [a ,a’ ] of length ts is defined as the mean of the
interpolated function fpl (t ) over [a ,a’ ].
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the upper bound derived here for the mean-square common-source phase error depends on the sideband
power of the offset source at integer multiples of νb = 1/τb = 100 Hz from the carrier, in bands of width
1/τs = 2 Hz.

The sideband noise is separated into two components. The first consists of spurs at multiples of νb
from the carrier; these spurs come from the current design of the 100-Hz offset generator, which is based
on two single-sideband mixer circuits in series.3 The second is random broadband noise, coming mainly
from the voltage-controlled oscillator (VCO) of the cleanup loop used to attenuate the spurs. The FSA
design is intended to take advantage of the rapid decrease in spectral density of this noise as frequency
offset increases from 1 Hz to 100 Hz.

II. Results

Let νr be the frequency of the sources under test (100 MHz). The offset source, with carrier power
P0, runs at frequency ν0 = νr − νb, where νb is the designed beat frequency (100 Hz). Let it have
spurs with power P0a

2
m at frequencies ν0 + mνb, where m is a positive or negative integer, in addition

to random modulation noise with a smooth single-sideband power density Sssb (ν), relative to the carrier
power, at offset frequency ν (positive or negative) from ν0. We do not assume symmetry of sidebands or
independence of phase and amplitude modulations. We do assume that the amplitude of the total noise
is much less than that of the carrier, so that we can use linearized sideband analysis.

Test sources 1 and 2 at frequency νr are mixed with the offset source at frequency ν0, thus producing
beat notes 1 and 2 at nominal frequency νb. To reject the sum frequency and higher sidebands, we filter
each beat note through a lowpass filter, with transfer function G (ν), having a bandwidth of perhaps
3νb. (From this narrow point of view, it would be better to use a bandpass filter with G (0) = 0; see
Eqs. (1) and (2). Considerations of simplicity and stability probably will rule out this option.) The
zero crossings of the beat notes are captured by the event timer and converted to phase residuals by the
simple formula of Eq. (B-1). For a given interval of length τs = 1/νs (default 0.5 s), we apply integrated
interpolation (Fig. 2) to the phase residuals of each channel (about 50 per interval) to obtain average
phase residuals φ̂1-0, φ̂2-0, representing the phase differences between the test sources and the offset source
in a measurement bandwidth (1/2)νs (default 1 Hz). Then φ̂1-2 = φ̂1-0 − φ̂2-0 represents the dual-mixer
phase residual for source 1 − source 2. These phases are collected for a sequence of adjacent τs intervals
and reduced to stability measures such as Allan deviation.

Assuming that the two beat notes are not coherent, we estimate the contribution of the offset-source
noise to the error in φ̂1-2. The result given here is an approximate upper bound for the long-term mean-
square phase error σ2

φ =
〈
Eφ̂2

1-2
〉
, where 〈 〉 indicates an average over time, and E an average over the

randomness of the noise. For any signed integer m, write Gm = |G (mνb)|, the frequency response of the
lowpass mixing filter at frequency mνb. Under reasonable assumptions about the random noise, we find
that

σ2
φ ≤

1
G2

1

∑
m6=0

{
G2
m−1

[
a2
m + νsSssb (mνb)

]
+Gm−1G−m−1

[
ama−m + νs

√
Sssb (mνb) Sssb (−mνb)

] }
(1)

which gives a bound for σ2
φ in terms of the lowpass filter response, the spur powers a2

m, and the broadband
noise powers νsSssb (mνb) in bands of width νs around the harmonics of the beat frequency.

This result is only a slight improvement over a simpler result that can be derived from Eq. (1) by
applying Schwarz’s inequality in the form

3 G. Stevens, personal communication, Jet Propulsion Laboratory, Pasadena, California, 2000.
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∑
xmx−m ≤

√∑
x2
m

∑
x2
−m =

∑
x2
m

to the sum of the lower terms of Eq. (1). We obtain the slightly weaker estimate

σ2
φ ≤

2
G2

1

∑
m6=0

G2
m−1

[
a2
m + νsSssb (mνb)

]
(2)

For example, suppose that G is a single-pole lowpass filter with 3-dB bandwidth 3νb; then G2
m =(

1 + m2/9
)−1. Let4

νs = 2 Hz

Sssb (mνb) ≤ −160 dBc/Hz (at 5 MHz) = −134 dBc/Hz (at 100 MHz) = 4× 10−14 Hz−1

Using Maple,5 we find that

2
G2

1

∑
m6=0

G2
m−1 = 18.94

1
G2

1

∑
m6=0

[
G2
m−1 + Gm−1G−m−1

]
= 18.67

Even though Eq. (1) is hardly an improvement over Eq. (2) in this case, we shall use it anyway. Considering
only the broadband noise, we have

σ2
φ ≤ (18.67) (2)

(
4× 10−14

)
= 1.49× 10−12 rad2

σφ ≤ 1.22× 10−6 rad (3)

which corresponds to a time deviation at νr = 100 MHz of

σx =
σφ

2πνr
= 1.94× 10−15 s (4)

What does this mean for Allan deviation noise floor? The mean-square phase result gives no hint of
the time dependence of the phase residual φ̂1-2. If we assume that it is white, then

σy (τ) =
√

3σx
τ
≤ 3.36× 10−15 s

τ
(5)

4 A. Kirk, personal communication on measurements of a commercial VCO, Jet Propulsion Laboratory, Pasadena, 2000.

5 Copyright Waterloo Maple Inc.
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To make the contribution of spurs to σ2
φ as small as that of the broadband noise, we could require

spur power at offset mνb to be at most equal to the broadband noise power in a 2-Hz band about mνb.
This might be too much to ask. The author has carried out a close analysis6 of the effect of one spur
on one beat note, assuming that the offset and test sources are perfectly stable but the frequency of the
test source differs from the nominal 100 MHz by much less than 1 Hz. This analysis shows that the
time dependence of the phase disturbance depends on this frequency error, while the amplitude of the
disturbance is compatible with Eqs. (1) and (2). Although σy (τ) would behave like σx/τ for large τ , it
could be much less for small τ .

III. Conclusions

According to our results and noise measurements on a commercial VCO, the contribution of broadband
offset-source noise to the Allan deviation noise floor of a dual-mixer channel is at most 3.4 × 10−15/τ .
Combining this with the quantization effect of a 20-ns event timer, about 2× 10−15/τ , gives an rss total
of 4×10−15/τ , worse than the desired 3×10−15/τ . Nevertheless, a pair of CSOs could be measured with
a lower noise floor by mixing them at 800 MHz in a single-mixer configuration; this is feasible because
the 800-MHz synthesized output of a CSO can be offset by as much as several hundred hertz.

The effect of offset-generator spurs is more difficult to assess, both theoretically and experimentally.
The analysis performed here gives only a bound for long-term mean-square phase error, on which no
requirements have been placed. In a noise-floor test using the same oscillator for the offset source and for
two test sources, the spurs would be aliased to a constant phase offset, which has no bearing on frequency
stability. If at least one of the sources could be given a small (¿1 Hz) additional frequency offset, then
the effect of the spurs might be visible as a slow periodic modulation of the measured phase residuals.
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Appendix A

Derivation of Results

This derivation is not rigorous. We use a discrete-frequency sideband model, results from which will
be applied to noise that has a continuous-spectrum component. Other approximations are made along
the way. Without further comment, we shall write ω = 2πν, ω0 = 2πν0, and so forth.

Let the signal of the offset source be represented by

s0 (t) = cos (ω0t + θ0) +
∑
ν

a (ν) cos
(
(ω0 + ω) t + θ0 + α (ν)

)

where the summation is taken over a discrete set of offset frequencies ν such that 0 < |ν| < ν0. We
assume that

∑
ν |a (ν)| ¿ 1. Let

ζ(ν) = a(ν)eiα(ν), z0(t) =
∑
ν

ζ(ν)eiωt (A-1)

ε0 = Re z0 (t) , φ0 (t) = Im z0 (t) (A-2)

Then

s0 (t) = Re
{

ei(ω0t+θ0)
[
1 + z0 (t)

]}
= Re

{
ei(ω0t+θ0)

[
1 + ε0 (t) + iφ0 (t)

]}

= Re
{

ei(ω0t+θ0)
[
1 + ε0 (t)

]
eiφ0(t)

}
to 1st order

=
[
1 + ε0 (t)

]
cos

(
ω0t + θ0 + φ0 (t)

)
The complex-valued process z0 (t) will be called the sideband process of s0 (t). Relative to carrier power
1/2, the single-sideband power in the offset frequency band (ν1, ν2) is

∑
ν1<ν<ν2

E |ζ (ν)|2, which is
interpreted as

∫ ν2

ν1
Sssb (ν) dν plus the sum of the powers of any spurs in this band.

Let test signal 1 have a similar representation,

s1 (t) = Re
{

ei(ωrt+θ1)
[
1 + z1 (t)

]}
where |z1| ¿ 1. Beat note 1 with double frequencies rejected can be obtained as follows:

b1 (t) =
1
2

Re
{

ei(ωrt+θ1)
[
1 + z1 (t)

]
ei(ω0t+θ0)

[
1 + z0 (t)

]}

=
1
2

Re
{

ei(ωbt+θ1−θ0)
[
1 + z1 (t) + z0 (t)

] }
to 1st order
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Let g (t) be the impulse response of the lowpass filter G. For any signal s (t),

G
(
eiωb·s

)
(t) =

∫
eiωb(t−u)s (t− u) g (u) du

= eiωbt
[ (

e−iωb·g
)
∗ s

]
(t)

Accordingly (with the irrelevant factor 1/2 dropped),

Gb1 (t) = Re
{

ei(θ1−θ0)G
[
eωb· (1 + z1 + z0)

]
(t)

}

= Re
{

ei(ωbt+θ1−θ0)
(
e−iωb·g

)
∗ (1 + z1 + z0) (t)

}

= Re
{

ei(ωbt+θ1−θ0)G (νb)
[
1 + Gb (z1 + z0) (t)

]}
(A-3)

where Gb is the complex filter with impulse response and transfer function

gb (t) =
g (t) e−iωbt

G (νb)
, Gb (ν) =

G (ν + νb)
G (νb)

(A-4)

To first order, the phase residual of filtered beat note Gb1 (t) is given by

φ1−0 (t) = Im
[
Gb (z1 + z0) (t)

]
The zero crossings of beat note 1 have approximate spacing τb = 1/νb, the nth zero crossing tn,1 giving

rise to a sample φ1-0 (tn,1) of phase residual according to Eq. (B-1). Let us approximate this situation
by pretending that, locally in time, we have equally spaced samples φ1-0 ((n− λ1) τb), where 0 < λ1 < 1.
As time goes on, the fractional offset λ1 changes slowly; we assume that it is essentially constant over
any interval of length τs, the sample period. We shall simulate an average over many τs intervals by
averaging over λ1. Let τs = Nτb for an integer N , and let Tj = jτs+ τb. Over an interval [(j − 1) τs, jτs],
the average value of φ1-0 from the integrated-interpolation procedure is given by

φ̂1-0 (jτs) = (Bλ1Hλ1φ1−0) (Tj) (A-5)

where Bλ is a delay filter, Bλs (t) = s (t− λτb), and Hλ is a finite impulse response (FIR) filter that
comes from the averaging procedure. It is given as a polynomial in the τs delay B1 by

Hλ =
1−BN

1

N (1−B1)
Fλ (B1) , Fλ (B1) =

1
2
B1 +

1
2
[
B1 + λ (1−B1)

]2 (A-6)

(see Appendix B).

Similarly, for beat note 2 with sideband process z2 (t), we have
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φ2-0 (t) = Im
[
Gb (z2 + z0) (t)

]
φ̂2-0 (jτs) = (Bλ2Hλ2φ2-0) (Tj)

 (A-7)

Thus, keeping only the dependence on the sideband process z0 of the offset source, we can represent one
sample of the common-source phase error by

φ̂1-2 (jτs) = φ̂1-0 (jτs)− φ̂2-0 (jτs)

= Im
[
(Bλ1Hλ1 −Bλ2Hλ2) Gbz0 (Tj)

]
Applying the filters to z0 (t) =

∑
ν ζ (ν)e−iωt term by term, we obtain

φ̂1-2 (jτs) =
∑
ν

Im
[
∆ (−ν;λ1, λ2) Gb (−ν) ζ (ν)e−iωTj

]
(A-8)

where

∆ (ν;λ1, λ2) =
1− e−iNωτb

N (1− e−iωτb)
[
e−iλ1ωτbFλ1

(
e−iωτb

)
− e−iλ2ωτbFλ2

(
e−iωτb

) ]
(A-9)

the transfer function of Bλ1Hλ1 −Bλ2Hλ2 .

At this point, let us split off from z0 (t) a nonrandom portion due to spurs: assume that

ζ (mνb) = ameiαm if m 6= 0

where am ≥ 0. The spur portion of φ̂1-2 (jτs) is given by

φ̂spur (jτs) =
∑
m6=0

Im
[
∆ (−mνb; λ1, λ2) Gb (−mνb) ame−iαme−imνbTj

]
(A-10)

The last exponential is just 1, and ∆ (−mνb; λ1, λ2) = ei2πmλ1−ei2πmλ2 . Also write Gb (−mνb) ame−iαm =
|Gb (−mνb)| ame−iβm . Then Eq. (A-10) simplifies to

φ̂spur (jτs) =
∑
m6=0

Im
[ (

ei2πmλ1 − ei2πmλ2
)
|Gb (−mνb)| ame−iβm

]

=
∑
m6=0

|Gb (−mνb)| am
[
sin (2πmλ1 − βm)− sin (2πmλ2 − βm)

]

This depends on time jτs indirectly through λ1 and λ2, which are assumed to change slowly with j. We
simulate the time average of φ̂2

spur by integrating over λ1 and λ2 as follows:
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〈
φ̂2

spur

〉
=

∫ 1

0

∫ 1

0

φ̂2
spur (jτs) dλ1dλ2

=
∑
m6=0

∑
m′ 6=0

|Gb (−mνb) Gb (−m′νb)| amam′I (m, m′) (A-11)

where

I (m, m′) =
∫ 1

0

∫ 1

0

[
sin (2πmλ1 − βm)− sin (2πmλ2 − βm)

]
×

[
sin (2πm′λ1 − βm′)− sin (2πm′λ2 − βm′)

]
dλ1dλ2

For any f, g ∈ L2 (0, 1),

∫ 1

0

∫ 1

0

[
f (x)− f (y)

][
g (x)− g (y)

]
dxdy = 2

∫ 1

0

fg − 2
(∫ 1

0

f

) (∫ 1

0

g

)
(A-12)

Consequently, since m and m′ are both nonzero,

I (m, m′) = 2
∫ 1

0

sin (2πmλ− βm) sin (2πm′λ− βm′) dλ

= δm−m′ − δm+m′ cos (βm + βm′)

Therefore,

〈
φ̂2

spur

〉
=

∑
m6=0

[
|Gb (−mνb)|2 a2

m − |Gb (−mνb) Gb (mνb)| ama−m cos (βm + β−m)
]

≤
∑
m6=0

[
|Gb (−mνb)|2 a2

m + |Gb (−mνb) Gb (mνb)| ama−m
]

(A-13)

In view of Eq. (A-4), we have obtained the spur portion of Eq. (1). Additional knowledge about the
phases of the spurs and of G would let us avoid estimating the cosine by −1 here.

Now we treat the random portion of the phase error, Eq. (A-8). For this purpose, let us agree that a
sum over ν avoids the spurs. Abbreviating ∆ (ν; λ1, λ2) by ∆ (ν), we write

φ̂rand (jτs) =
∑
ν

Im
[
∆ (−ν) Gb (−ν) ζ (ν)e−iωTj

]

=
1
2i

∑
ν

[
∆ (−ν) Gb (−ν) ζ (ν)e−iωTj −∆ (−ν) Gb (−ν)ζ (ν) eiωTj

]
(A-14)

9



If the random variables ζ (ν) satisfy the conditions

Eζ (ν) = 0 for all ν (A-15)

Eζ (ν) ζ (ν′) = Eζ (ν) ζ (−ν′) = 0 if ν 6= ν′ (A-16)

then the random portion of the two-dimensional modulation process [ε0 (t) , φ0 (t)] [see Eq. (A-2)] is a
mean-zero process with a stationary correlation matrix. Assume that Eqs. (A-15) and (A-16) hold. Then

Eφ̂2
rand (jτs) =− 1

4

∑
ν

∑
ν′

E


[
∆ (−ν) Gb (−ν) ζ (ν)e−iωTj −∆ (−ν) Gb (−ν)ζ (ν) eiωTj

]
×

[
∆ (−ν′) Gb (−ν′) ζ (ν′)e−iω

′Tj −∆ (−ν′) Gb (−ν′)ζ (ν′) eiω
′Tj

]


=
1
2

∑
ν

|∆ (ν;λ1, λ2)|2
{
|Gb (−ν)|2 E |ζ (ν)|2 − Re

[
Gb (−ν) Gb (ν)Eζ (ν) ζ (−ν)

]}
(A-17)

We now average this over λ1 and λ2. From Appendix B,

1
2

∫ 1

0

∫ 1

0

|∆ (ν;λ1, λ2)|2 dλ1dλ2 =

[
sin (Nπντb)
N sin (πντb)

]2
{

11
20

+
13
30

cos (2πντb) +
1
60

cos (4πντb)−
[
sin (πντb)

πντb

]6
}

(A-18)

The expression in braces equals δm when ν = mνb; therefore, for large N , Eq. (A-18) constitutes a comb
with teeth at mνb having width and mass νb/N = νs, but missing the tooth at ν = 0; see Fig. A-1.
Letting

K (ν) =
[
sin (πντs)

πντs

]2

we have the large-N approximation

1
2

∫ 1

0

∫ 1

0

|∆ (ν; λ1, λ2)|2 dλ1dλ2 =
∑
m6=0

K (ν −mνb)

Using this in Eq. (A-17), and assuming that G (ν) is essentially constant as far as K (ν −mνb) is con-
cerned, we have

〈
Eφ̂2

rand

〉
=

∫ 1

0

∫ 1

0

Eφ̂2
randdλ1dλ2

=
∑
m6=0


|Gb (−mνb)|2

∑
ν K (ν −mνb) E |ζ (ν)|2

−Re
[
Gb (−mνb) Gb (mνb)

∑
ν K (ν −mνb) Eζ (ν) ζ (−ν)

]
 (A-19)
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Fig. A-1.  A comb with the central tooth missing.  Equation (A-18) with N = 10
is plotted with and without the digital sinc2 factor.

By Schwarz’s inequality applied to the “integral”
∑
ν K (ν −mνb) E () ,

∣∣∣∣∣∑
ν

K (ν −mνb) Eζ (ν) ζ (−ν)

∣∣∣∣∣ ≤
[∑

ν

K (ν −mνb) E |ζ (ν)|2
∑
ν

K (ν + mνb) E |ζ (ν)|2
]1/2

We interpret
∑
ν K (ν −mνb) E |ζ (ν)|2 as

∫
K (ν −mνb) Sssb (ν) dν, which is approximately νsSssb (mνb)

if Sssb (ν) is smooth. With this approximation,

〈
Eφ̂2

rand

〉
≤

∑
m6=0

[
|Gb (−mνb)|2 νsSssb (mνb)

+ |Gb (−mνb) Gb (mνb)|
√

νsSssb (mνb) νsSssb (−mνb)

]

This is the random contribution to the bound of Eq. (1) on σ2
φ. Finally, σ2

φ =
〈
φ̂2

spur

〉
+

〈
Eφ̂2

rand

〉
because

Eζ (ν) = 0.
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Appendix B

Integrated Interpolation Filter

Integrated interpolation is the method used in the proposed analyzer for associating an average phase
to a fixed time interval [a, a′] (of length τs) from unequally spaced zero crossings tn. Each tn gives rise
to a phase residual φ (tn) according to the equation 2πνbtn + φ (tn) = 2πn; thus,

φ (tn) = 2π (n− νbtn) (B-1)

The piecewise linear function φpl (t) is defined by linear interpolation between the points (tn, φ (tn)),
and the average phase is defined by

φ̂ =
1

a′ − a

∫ a′

a

φpl (t) dt

(Fig. 2). Average phases for successive τs intervals can be produced by a simple real-time algorithm
acting on the stream of measured tn.

Here, we treat a local approximation in which tn = (n− λ) τb for some λ ∈ (0, 1) and the averaging
interval is [0, Nτb]. Evaluating the trapezoidal areas in Fig. 2, we find that

φ̂ =
1
N


(1− λ)2

2
φ (t0) +

(
1− λ2

2

)
φ (t1) +

∑N−1
n=2 φ (tn)

+

(
1− (1− λ)2

2

)
φ (tN ) +

λ2

2
φ (tN+1)


= (BλHλφ)

(
(N + 1) τb

)
(B-2)

Here, Bλ is a shift filter, Bλs (t) = s (t− λτb), and Hλ is a causal FIR filter with sample period τb and
impulse response vector

1
N

λ2

2
, 1− (1− λ)2

2
, 1, · · · , 1︸ ︷︷ ︸

N−2

, 1− λ2

2
,
(1− λ)2

2


A simple computation gives the expression in Eq. (A-6) for Hλ. In Eq. (B-2), φ is the actual underlying
phase function, not the artificial interpolated function φpl.

We now look at properties of BλHλ in the frequency domain. Define transfer functions

Bλ (ν) = e−i2πνλτb

AN (ν) =
1−BN

1 (ν)
N

(
1−B1 (ν)

) = e−iπ(N−1)ντb
sin (Nπντb)
N sin (πντb)
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Hλ (ν) = AN (ν)Fλ
(
B1 (ν)

)
Then

Bλ (ν) Hλ (ν) = AN (ν)
{

1− 3
2
iωτb −

5
4

(ωτb)
2 + i (ωτb)

3

[
3
4

+
1
12

λ (1− λ) (1− 2λ)
]}

+ O (ωτb)
4 as ωτb → 0

hence

∆ (ν;λ1, λ2) = Bλ1 (ν) Hλ1 (ν)−Bλ2 (ν) Hλ2 (ν) = O (ωτb)
3

for any λ1, λ2. Even though AN − BλHλ has only one vanishing moment, the filter representing the
local difference of average phases between two channels has three vanishing moments; this means that a
dual-mixer channel 1-2 is not affected by a linear frequency drift common to both channels 1-0 and 2-0.

Finally, let us treat the integral, Eq. (A-18), of 1/2 |∆|2 over λ1 and λ2. By Eq. (A-12),

1
2

∫ 1

0

∫ 1

0

|∆ (ν;λ1, λ2)|2 dλ1dλ2 = |AN (ν)|2
[∫ 1

0

|Bλ (ν)Fλ (ν)|2 dλ−
∣∣∣∣∫ 1

0

Bλ (ν) Fλ (ν) dλ

∣∣∣∣2
]

Evaluating the integrals on the right with Maple, we obtain Eq. (A-18), the right side of which is O (ωτb)
6

as ωτb → 0.
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